Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70.285
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 487-515, jul. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1538020

ABSTRACT

Myrtus communis L., commonly known as true myrtle, is a medicinal plant native to the Mediterranean area. Since ancient times, the inhabitant s of this area have been using it for its cultural and medicinal properties. Because of the vast diversity of biomolecules in its aerial parts, it exhibits several biological properties, including antioxidant, antimicrobial, and anticancer properties. This review retrospect the research on the source, biological activities with empirical evidence, chemical composition, applications, and cellular targets of extracts and essential oils obtained from M. communis leaves, which provides a perspective for further studies on the applications and formulations of extract and EO of M. communis leaves. The efficacy of constituents' individually, in association with other bioactive constituents, or in combination with available commercial drugs would provide insights in to the development of these bio - actives as future drugs and their evolving future potential applications in the pharmaceutical, food, and aroma industries.


Myrtus communis L., comúnmente conocido como arrayán verdadero, es una planta medicinal originaria de la zona mediterránea. Desde la antigüedad, los habitantes de esta zona lo utilizan por sus propiedades culturales y medicinales. Debido a la gran div ersidad de biomoléculas en sus partes aéreas, exhibe varias propiedades biológicas, incluidas propiedades antioxidantes, antimicrobianas y anticancerígenas. Esta revisión retrospectiva de la investigación sobre la fuente, las actividades biológicas con evi dencia empírica, la composición química, las aplicaciones y los objetivos celulares de los extractos y aceites esenciales obtenidos de las hojas de M. communis , lo que brinda una perspectiva para futuros estudios sobre las aplicaciones y formulaciones de l os extractos y EO de M. communis . La eficacia de los componentes individualmente, en asociación con otros componentes bioactivos o en combinación con medicamentos comerciales disponibles proporcionaría información sobre el desarrollo de estos bioactivos co mo medicamentos futuros y sus futuras aplicaciones potenciales en las industrias farmacéutica, alimentaria y aromática


Subject(s)
Myrtus communis/pharmacology , Plants, Medicinal , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Plant Leaves/metabolism , Anti-Bacterial Agents , Antifungal Agents , Antioxidants
2.
Sci Rep ; 14(1): 10484, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714767

ABSTRACT

The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 µg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 µg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 µg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.


Subject(s)
Metal Nanoparticles , Silver Compounds , Metal Nanoparticles/chemistry , Animals , Humans , Silver Compounds/chemistry , Silver Compounds/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Artemia/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Green Chemistry Technology/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Vero Cells , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Silver/chemistry , Silver/pharmacology , Oxides
4.
PLoS One ; 19(5): e0303373, 2024.
Article in English | MEDLINE | ID: mdl-38728271

ABSTRACT

BACKGROUND: Candida represents a prevalent fungal infection, notable for its substantial implications on morbidity and mortality rates. In the landscape of prospective treatments, quinoxaline derivatives emerge as a category of compact compounds exhibiting notable potential in addressing infections. These derivatives showcase promising antimicrobial efficacy coupled with favorable pharmacokinetic and safety characteristics. AIMS: The central aim of this investigation was to examine the antifungal characteristics of 2-Chloro-3-hydrazinylquinoxaline against diverse strains of Candida and Aspergillus in vitro. Additionally, we endeavored to assess the in vivo efficacy of 2-Chloro-3-hydrazinylquinoxaline using a murine model for oral candidiasis induced by C. albicans cells ATCC 10231. RESULTS: 2-Chloro-3-hydrazinylquinoxaline demonstrated noteworthy effectiveness when tested against various reference strains of Candida species. It exhibited heightened efficacy, particularly against Candida krusei isolates. However, its performance against Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, and Candida auris isolates exhibited variability. Notably, 2-Chloro-3-hydrazinylquinoxaline manifests variable efficacy against Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus and Aspergillus flavus and no effect against Aspergillus brasiliensis. In a murine model, 2-Chloro-3-hydrazinylquinoxaline exhibited significant efficacy in combating the C. albicans cells ATCC 10231 strain, underscoring its potential as a viable treatment option. CONCLUSION: 2-Chloro-3-hydrazinylquinoxaline has demonstrated substantial potential in effectively addressing various Candida and Aspergillus species, showcasing dual attributes of antifungal and anti-inflammatory properties. However, to attain a more comprehensive understanding of its therapeutic capabilities, further investigations, incorporating additional tests and experiments, are imperative.


Subject(s)
Antifungal Agents , Candida , Microbial Sensitivity Tests , Quinoxalines , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Quinoxalines/pharmacology , Quinoxalines/chemistry , Animals , Candida/drug effects , Mice , Disease Models, Animal , Candidiasis/drug therapy , Candidiasis/microbiology , Female
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731815

ABSTRACT

The development of novel natural product-derived nano-pesticide systems with loading capacity and sustained releasing performance of bioactive compounds is considered an effective and promising plant protection strategy. In this work, 25 L-carvone-based thiazolinone-hydrazone compounds 4a~4y were synthesized by the multi-step modification of L-carvone and structurally confirmed. Compound 4h was found to show favorable and broad-spectrum antifungal activity through the in vitro antifungal activity evaluation of compounds 4a~4y against eight phytopathogenic fungi. Thus, it could serve as a leading compound for new antifungal agents in agriculture. Moreover, the L-carvone-based nanochitosan carrier 7 bearing the 1,3,4-thiadiazole-amide group was rationally designed for the loading and sustained releasing applications of compound 4h, synthesized, and characterized. It was proven that carrier 7 had good thermal stability below 200 °C, dispersed well in the aqueous phase to form numerous nanoparticles with a size of~20 nm, and exhibited an unconsolidated and multi-aperture micro-structure. Finally, L-carvone-based thiazolinone-hydrazone/nanochitosan complexes were fabricated and investigated for their sustained releasing behaviors. Among them, complex 7/4h-2 with a well-distributed, compact, and columnar micro-structure displayed the highest encapsulation efficiency and desirable sustained releasing property for compound 4h and thus showed great potential as an antifungal nano-pesticide for further studies.


Subject(s)
Antifungal Agents , Chitosan , Cyclohexane Monoterpenes , Hydrazones , Nanoparticles , Chitosan/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Nanoparticles/chemistry , Cyclohexane Monoterpenes/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Delayed-Action Preparations , Microbial Sensitivity Tests , Drug Carriers/chemistry
6.
Mycopathologia ; 189(3): 45, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734753

ABSTRACT

INTRODUCTION: The global spread of Trichophyton indotineae presents a pressing challenge in dermatophytosis management. This systematic review explores the current landscape of T. indotineae infections, emphasizing resistance patterns, susceptibility testing, mutational analysis, and management strategies. METHODS: A literature search was conducted in November 2023 using Embase, PubMed, Scopus, and Web of Science databases. Inclusion criteria covered clinical trials, observational studies, case series, or case reports with T. indotineae diagnosis through molecular methods. Reports on resistance mechanisms, antifungal susceptibility testing, and management were used for data extraction. RESULTS AND DISCUSSION: A total of 1148 articles were identified through the systematic search process, with 45 meeting the inclusion criteria. The global spread of T. indotineae is evident, with cases reported in numerous new countries in 2023. Tentative epidemiological cut-off values (ECOFFs) suggested by several groups provide insights into the likelihood of clinical resistance. The presence of specific mutations, particularly Phe397Leu, correlate with higher minimum inhibitory concentrations (MICs), indicating potential clinical resistance. Azole resistance has also been reported and investigated in T. indotineae, and is a growing concern. Nevertheless, itraconazole continues to be an alternative therapy. Recommendations for management include oral or combination therapies and individualized approaches based on mutational analysis and susceptibility testing. CONCLUSION: Trichophyton indotineae poses a complex clinical scenario, necessitating enhanced surveillance, improved diagnostics, and cautious antifungal use. The absence of established clinical breakpoints for dermatophytes underscores the need for further research in this challenging field.


Subject(s)
Antifungal Agents , Drug Resistance, Fungal , Microbial Sensitivity Tests , Mutation , Tinea , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Humans , Drug Resistance, Fungal/genetics , Tinea/drug therapy , Tinea/microbiology , Trichophyton/drug effects , Trichophyton/genetics , Global Health
7.
Arch Microbiol ; 206(6): 257, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734773

ABSTRACT

There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.


Subject(s)
Antifungal Agents , Candida , Protease Inhibitors , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Protease Inhibitors/pharmacology , Microbial Sensitivity Tests , Animals , Capsicum/microbiology , Reactive Oxygen Species/metabolism , Seeds/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Erythrocytes/drug effects , Larva/microbiology , Larva/growth & development , Larva/drug effects
9.
Mycopathologia ; 189(3): 44, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734862

ABSTRACT

A 50-year-old man, previously diagnosed with pulmonary tuberculosis and lung cavities, presented with symptoms including fever, shortness of breath, and cough. A pulmonary CT scan revealed multiple cavities, consolidation and tree-in-bud in the upper lungs. Further investigation through direct examination of bronchoalveolar lavage fluid showed septate hyphae with dichotomous acute branching. Subsequent isolation and morphological analysis identified the fungus as belonging to Aspergillus section Nigri. The patient was diagnosed with probable invasive pulmonary aspergillosis and successfully treated with a three-month oral voriconazole therapy. Phylogenetic analysis based on partial ß-tubulin, calmodulin and RNA polymerase second largest subunit sequences revealed that the isolate represents a putative new species related to Aspergillus brasiliensis, and is named Aspergillus hubkae here. Antifungal susceptibility testing demonstrated that the isolate is resistant to itraconazole but susceptible to voriconazole. This phenotypic and genetic characterization of A. hubkae, along with the associated case report, will serve as a valuable resource for future diagnoses of infections caused by this species. It will also contribute to more precise and effective patient management strategies in similar clinical scenarios.


Subject(s)
Antifungal Agents , Aspergillus , Invasive Pulmonary Aspergillosis , Microbial Sensitivity Tests , Phylogeny , Sequence Analysis, DNA , Voriconazole , Humans , Middle Aged , Male , Invasive Pulmonary Aspergillosis/microbiology , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/diagnosis , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Aspergillus/isolation & purification , Aspergillus/genetics , Aspergillus/classification , Aspergillus/drug effects , Voriconazole/therapeutic use , Voriconazole/pharmacology , Bronchoalveolar Lavage Fluid/microbiology , Tomography, X-Ray Computed , DNA, Fungal/genetics , DNA, Fungal/chemistry , Itraconazole/therapeutic use , Cluster Analysis , Treatment Outcome , Tubulin/genetics , Microscopy
10.
BMJ Open ; 14(5): e081914, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702077

ABSTRACT

OBJECTIVES: To evaluate the efficacy of topical miconazole or amorolfine compared to placebo for mild to moderately severe onychomycosis. DESIGN: Randomised, double-blind, placebo-controlled trial, with computer-generated treatment allocation at a 1:1:1 ratio. SETTING: Primary care, recruitment from February 2020 to August 2022. PARTICIPANTS: 193 patients with suspected mild to moderately severe onychomycosis were recruited via general practices and from the general public, 111 of whom met the study criteria. The mean age of participants was 51 (SD 13.1), 51% were female and onychomycosis was moderately severe (mean OSI 12.1 (SD 8.0)). INTERVENTIONS: Once-daily miconazole 20 mg/g or once-weekly amorolfine 5% nail lacquer solution was compared with placebo (denatonium benzoate solution). MAIN OUTCOME MEASURES: Complete, clinical and mycological cure at 6 months. Secondary outcomes were clinical improvement, symptom burden, quality of life, adverse effects, compliance, patient-perceived improvement and treatment acceptability. RESULTS: Based on intention-to-treat analysis, none of the participants receiving miconazole or amorolfine reached complete cure compared with two in the placebo group (OR not estimable (n.e.), p=0.493 and OR n.e., p=0.240, respectively). There was no evidence of a significant difference between groups regarding clinical cure (OR n.e., p=0.493 and OR 0.47, 95% CI 0.04 to 5.45, p=0.615) while miconazole and amorolfine were less effective than placebo at reaching both mycological cure (OR 0.25, 95% CI 0.06 to 0.98, p=0.037 and OR 0.23, 95% CI 0.06 to 0.92, p=0.029, respectively) and clinical improvement (OR 0.26, 95% CI 0.08 to 0.91, p=0.028 and OR 0.25, 95% CI 0.07 to 0.85, p=0.021, respectively). There was no evidence of a significant difference in disease burden, quality of life, adverse reactions, compliance, patient-perceived improvement or treatment acceptability. CONCLUSIONS: Topical miconazole and amorolfine were not effective in achieving a complete, clinical or mycological cure of mild to moderately severe onychomycosis, nor did they significantly alleviate the severity or symptom burden. These treatments should, therefore, not be advised as monotherapy to treat onychomycosis. TRIAL REGISTRATION NUMBER: WHO ICTRP NL8193.


Subject(s)
Administration, Topical , Antifungal Agents , Miconazole , Morpholines , Onychomycosis , Humans , Miconazole/administration & dosage , Miconazole/therapeutic use , Onychomycosis/drug therapy , Female , Double-Blind Method , Male , Middle Aged , Antifungal Agents/administration & dosage , Antifungal Agents/therapeutic use , Treatment Outcome , Adult , Primary Health Care , Quality of Life , Aged , Severity of Illness Index
11.
Front Cell Infect Microbiol ; 14: 1322847, 2024.
Article in English | MEDLINE | ID: mdl-38707513

ABSTRACT

The aetiology of chronic aseptic meningitis is difficult to establish. Candida meningitis in particular is often diagnosed late, as cerebrospinal fluid (CSF) work-up and imaging findings are nonspecific. A 35-year-old patient with chronic aseptic meningitis, for which repeated microbiological testing of CSF was unrevealing, was finally diagnosed with Candida albicans (C. albicans) meningitis with cauda equina involvement using metagenomic next-generation sequencing (mNGS). This report highlights the diagnostic challenges and the difficulties of treating shunt-associated fungal meningitis.


Subject(s)
Candida albicans , High-Throughput Nucleotide Sequencing , Meningitis, Fungal , Metagenomics , Humans , Adult , Candida albicans/genetics , Candida albicans/isolation & purification , Meningitis, Fungal/diagnosis , Meningitis, Fungal/microbiology , Meningitis, Fungal/drug therapy , Metagenomics/methods , Candidiasis/diagnosis , Candidiasis/microbiology , Candidiasis/cerebrospinal fluid , Male , Chronic Disease , Antifungal Agents/therapeutic use , Meningitis, Aseptic/diagnosis
12.
J Infect Dev Ctries ; 18(4): 636-639, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728631

ABSTRACT

INTRODUCTION: Kodamaea ohmeri is a rare, recognized pathogen that has previously been isolated from environmental sources. The patients commonly affected by this yeast include immunocompromised as well as immunocompetent patients having several associated risk factors. METHODOLOGY: We report three cases in which K. ohmeri was isolated from blood using Bact T/ALERT. Identification was carried out by MALDI-TOF MS (Vitek-MS, BioMérieux, Marcy-l'Etoile, France) in addition to color characteristics on chromogenic media. The patients had diminished immune response on account of a multitude of comorbidities. RESULTS: K. ohmeri can be misidentified as Candida tropicalis, Candida albicans, or Candida hemolounii by conventional methods; correct and timely identification can be achieved by MALDI-TOF MS. Antifungal susceptibility breakpoints for K. ohmeri are currently not defined. An Echinocandin was added to the treatment regimen of all three of the cases. CONCLUSIONS: Identification of K. ohmeri using conventional methods is difficult and unusual yeasts should be carefully observed, especially upon prolonged incubation.


Subject(s)
Antifungal Agents , Immunocompromised Host , Saccharomycetales , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Male , Saccharomycetales/isolation & purification , Saccharomycetales/drug effects , Female , Middle Aged , Aged , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/microbiology , Microbiological Techniques
13.
Mycopathologia ; 189(3): 40, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704798

ABSTRACT

Candida parapsilosis complex has recently received special attention due to naturally occurring FKS1 polymorphism associated with high minimal inhibitory concentrations for echinocandin and the increase of clonal outbreaks of strains resistant to commonly used antifungals such as fluconazole. Despite the previous fact, little is known about the genetic mechanism associated with echinocandin resistance. Therefore, the present study was designed to investigate the mechanism of acquired echinocandin resistance in C. parapsilosis complex strains. A total of 15 clinical C. parapsilosis complex isolates were sub-cultured for 30 days at a low concentration of micafungin at ½ the lowest MIC value of the tested isolates (0.12 µg/ml). After culturing, all the isolates were checked phenotypically for antifungal resistance and genotypically for echinocandin resistance by checking FKS1 gene hot spot one (HS1) and HS2 mutations. In vitro induction of echinocandin resistance confirmed the rapid development of resistance at low concentration micafungin, with no difference among C. parapsilosis, C. metapsilosis, and C. orthopsilosis in the resistance development. For the first time we identified different FKS1 HS1 and or HS2 mutations responsible for echinocandin resistance such as R658S and L1376F in C. parapsilosis, S656X, R658X, R658T, W1370X, X1371I, V1371X, and R1373X (corresponding to their location in C. parapsilosis) in C. metapsilosis, and L648F and R1366H in C. orthopsilosis. Our results are of significant concern, since the rapid development of resistance may occur clinically after short-term exposure to antifungals as recently described in other fungal species with the potential of untreatable infections.


Subject(s)
Antifungal Agents , Candida parapsilosis , Drug Resistance, Fungal , Echinocandins , Microbial Sensitivity Tests , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Echinocandins/pharmacology , Humans , Candida parapsilosis/genetics , Candida parapsilosis/drug effects , Candidiasis/microbiology , Fungal Proteins/genetics , Glucosyltransferases/genetics , Mutation, Missense , Micafungin/pharmacology , Mutation
14.
Drug Dev Res ; 85(3): e22182, 2024 May.
Article in English | MEDLINE | ID: mdl-38704829

ABSTRACT

Our research aims to reduce the bacterial resistance of clindamycin against Gram-positive bacteria and expand its range of bacterial susceptibility. First, we optimized the structure of clindamycin based on its structure-activity relationship. Second, we employed the fractional inhibitory concentration method to detect drugs suitable for combination with clindamycin derivatives. We then used a linker to connect the clindamycin derivatives with the identified combined therapy drugs. Finally, we tested antibacterial susceptibility testing and conducted in vitro bacterial inhibition activity assays to determine the compounds. with the highest efficacy. The results of our study show that we synthesized clindamycin propionate derivatives and clindamycin homo/heterodimer derivatives, which exhibited superior antibacterial activity compared to clindamycin and other antibiotics against both bacteria and fungi. In vitro bacteriostatic activity testing against four types of Gram-negative bacteria and one type of fungi revealed that all synthesized compounds had bacteriostatic effects at least 1000 times better than clindamycin and sulfonamides. The minimum inhibitory concentration (MIC) values for these compounds ranged from 0.25 to 0.0325 mM. Significantly, compound 5a demonstrated the most potent inhibitory activity against three distinct bacterial strains, displaying MIC values spanning from 0.0625 to 0.0325 mM. Furthermore, our calculations indicate that compound 5a is safe for cellular use. In conclusion, the synthesized compounds hold great promise in addressing bacterial antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Clindamycin , Drug Design , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Microbial Sensitivity Tests , Clindamycin/pharmacology , Clindamycin/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Structure-Activity Relationship , Humans , Gram-Positive Bacteria/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry
15.
AAPS PharmSciTech ; 25(5): 106, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724834

ABSTRACT

The primary factor underlying the virulence of Candida albicans is its capacity to form biofilms, which in turn leads to recurrent complications. Over-the-counter antifungal treatments have proven ineffective in eliminating fungal biofilms and the inflammatory cytokines produced during fungal infections. Chitosan nanoparticles offer broad and versatile therapeutic potential as both antifungal agents and carriers for antifungal drugs to combat biofilm-associated Candida infections. In our study, we endeavoured to develop chitosan nanoparticles utilising chitosan and the antifungal crosslinker phytic acid targeting C. albicans. Phytic acid, known for its potent antifungal and anti-inflammatory properties, efficiently crosslinks with chitosan. The nanoparticles were synthesised using the ionic gelation technique and subjected to analyses including Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised nanoparticles exhibited dimensions with a diameter (Dh) of 103 ± 3.9 nm, polydispersity index (PDI) of 0.33, and zeta potential (ZP) of 37 ± 2.5 mV. These nanoparticles demonstrated an antifungal effect with a minimum inhibitory concentration (MIC) of 140 ± 2.2 µg/mL, maintaining cell viability at approximately 90% of the MIC value and reducing cytokine levels. Additionally, the nanoparticles reduced ergosterol content and exhibited a 62% ± 1.2 reduction in biofilm susceptibility, as supported by colony-forming unit (CFU) and XTT assays-furthermore, treatment with nanoparticles reduced exopolysaccharide production and decreased secretion of aspartyl protease by C. albicans. Our findings suggest that the synthesised nanoparticles effectively combat Candida albicans infections. In vivo studies conducted on a mouse model of vaginal candidiasis confirmed the efficacy of the nanoparticles in combating fungal infections in vivo.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Chitosan , Microbial Sensitivity Tests , Nanoparticles , Phytic Acid , Chitosan/chemistry , Biofilms/drug effects , Nanoparticles/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Animals , Candida albicans/drug effects , Mice , Microbial Sensitivity Tests/methods , Phytic Acid/pharmacology , Phytic Acid/administration & dosage , Phytic Acid/chemistry , Female , Candidiasis/drug therapy , Particle Size , Drug Carriers/chemistry , Cross-Linking Reagents/chemistry , Cytokines/metabolism
16.
BMC Infect Dis ; 24(1): 473, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711014

ABSTRACT

BACKGROUND: The incidence of Talaromyces marneffei (T. marneffei) infection has increased in recent years with the development of organ transplantation and the widespread use of immunosuppressive agents. However, the lack of clinical suspicion leading to delay or misdiagnosis is an important reason for the high mortality rate in non-human immunodeficiency virus (HIV) and non-endemic population. Herein, we report a case of disseminated T. marneffei infection in a non-HIV and non-endemic recipient after renal transplant, who initially presented with skin rashes and subcutaneous nodules and developed gastrointestinal bleeding. CASE PRESENTATION: We describe a 54-year-old renal transplantation recipient presented with scattered rashes, subcutaneous nodules and ulcerations on the head, face, abdomen, and right upper limb. The HIV antibody test was negative. The patient had no obvious symptoms such as fever, cough, etc. Histopathological result of the skin lesion sites showed chronic suppurative inflammation with a large number of fungal spores. Subsequent fungal culture suggested T. marneffei infection. Amphotericin B deoxycholate was given for antifungal treatment, and there was no deterioration in the parameters of liver and kidney function. Unfortunately, the patient was soon diagnosed with gastrointestinal bleeding, gastrointestinal perforation and acute peritonitis. Then he rapidly developed multiple organ dysfunction syndrome and abandoned treatment. CONCLUSIONS: The risk of fatal gastrointestinal bleeding can be significantly increased in kidney transplant patients with T. marneffei infection because of the long-term side effects of post-transplant medications. Strengthening clinical awareness and using mNGS or mass spectrometry technologies to improve the detection rate and early diagnosis of T. marneffei are crucial for clinical treatment in non-HIV and non-endemic population.


Subject(s)
Antifungal Agents , Deoxycholic Acid , Kidney Transplantation , Mycoses , Talaromyces , Transplant Recipients , Humans , Talaromyces/isolation & purification , Kidney Transplantation/adverse effects , Middle Aged , Male , Mycoses/diagnosis , Mycoses/drug therapy , Mycoses/microbiology , Antifungal Agents/therapeutic use , Fatal Outcome , Dermatomycoses/diagnosis , Dermatomycoses/microbiology , Dermatomycoses/drug therapy , Amphotericin B/therapeutic use , Drug Combinations
17.
BMC Oral Health ; 24(1): 551, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734599

ABSTRACT

BACKGROUND: Periodontal diseases may benefit more from topical treatments with nanoparticles rather than systemic treatments due to advantages such as higher stability and controlled release profile. This study investigated the preparation and characterization of thermosensitive gel formulations containing clindamycin-loaded niosomes and solid lipid nanoparticles (SLNs) loaded with fluconazole (FLZ), as well as their in vitro antibacterial and antifungal effects in the treatment of common microorganisms that cause periodontal diseases. METHODS: This study loaded niosomes and SLNs with clindamycin and FLZ, respectively, and assessed their loading efficiency, particle size, and zeta potential. The particles were characterized using a variety of methods such as differential scanning calorimetry (DSC), dynamic light scattering (DLS), and Transmission Electron Microscopy (TEM). Thermosensitive gels were formulated by combining these particles and their viscosity, gelation temperature, in-vitro release profile, as well as antibacterial and antifungal effects were evaluated. RESULTS: Both types of these nanoparticles were found to be spherical (TEM) with a mean particle size of 243.03 nm in niosomes and 171.97 nm in SLNs (DLS), and respective zeta potentials of -23.3 and -15. The loading rate was 98% in niosomes and 51% in SLNs. The release profiles of niosomal formulations were slower than those of the SLNs. Both formulations allowed the release of the drug by first-order kinetic. Additionally, the gel formulation presented a slower release of both drugs compared to niosomes and SLNs suspensions. CONCLUSION: Thermosensitive gels containing clindamycin-loaded niosomes and/or FLZ-SLNs were found to effectively fight the periodontitis-causing bacteria and fungi.


Subject(s)
Clindamycin , Fluconazole , Gels , Liposomes , Nanoparticles , Particle Size , Periodontal Diseases , Clindamycin/administration & dosage , Clindamycin/therapeutic use , Nanoparticles/chemistry , Fluconazole/administration & dosage , Fluconazole/pharmacology , Periodontal Diseases/drug therapy , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Transmission , Temperature , Calorimetry, Differential Scanning , Candida albicans/drug effects , Viscosity , Lipids/chemistry , Humans
18.
J Pineal Res ; 76(4): e12960, 2024 May.
Article in English | MEDLINE | ID: mdl-38747028

ABSTRACT

Natural products, known for their environmental safety, are regarded as a significant basis for the modification and advancement of fungicides. Melatonin, as a low-cost natural indole, exhibits diverse biological functions, including antifungal activity. However, its potential as an antifungal agent has not been fully explored. In this study, a series of melatonin derivatives targeting the mitogen-activated protein kinase (Mps1) protein of fungal pathogens were synthesized based on properties of melatonin, among which the trifluoromethyl-substituted derivative Mt-23 exhibited antifungal activity against seven plant pathogenic fungi, and effectively reduced the severity of crop diseases, including rice blast, Fusarium head blight of wheat and gray mold of tomato. In particular, its EC50 (5.4 µM) against the rice blast fungus Magnaporthe oryzae is only one-fourth that of isoprothiolane (22 µM), a commercial fungicide. Comparative analyzes revealed that Mt-23 simultaneously targets the conserved protein kinase Mps1 and lipid protein Cap20. Surface plasmon resonance assays showed that Mt-23 directly binds to Mps1 and Cap20. In this study, we provide a strategy for developing antifungal agents by modifying melatonin, and the resultant melatonin derivative Mt-23 is a commercially valuable, eco-friendly and broad-spectrum antifungal agent to combat crop disease.


Subject(s)
Antifungal Agents , Melatonin , Melatonin/pharmacology , Melatonin/chemistry , Melatonin/analogs & derivatives , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Plant Diseases/microbiology , Fungal Proteins/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis
19.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747920

ABSTRACT

BACKGROUND: The aim of the study was to improve the clinical cognition of leukemia-like reaction caused by voriconazole and granulocyte colony-stimulating factor and to avoid misdiagnosis or delayed diagnosis. METHODS: A case of drug analysis of Voriconazole combined with granulocyte colony stimulating factor was retrospectively analyzed and related literature was reviewed. RESULTS: Blood routine of the patient on July 29: WBC 13.48 x 109/L, neutrophil 85.3%, lymphocyte 13.4%, hemoglobin 111 g/L, platelet 285 x 109/L. Vancomycin was given to prevent intracranial infection. Lumbar puncture was performed on July 30, cerebrospinal fluid was sent for routine and biochemical examination, leukocytes were 0.15 x 109/L, monocytes 45%, polynuclear cells 55%, protein 1.172 g/L, Acinetobacter baumannii and Candida clorbicus were detected in sputum culture, vancomycin and meropenem static sites were given to prevent intracranial secondary infection. Fungi were detected in urine culture, and voriconazole was given to prevent fungal infection. Blood routine: White blood cell 0.61 x 109/L, neutrophil 23%, lymphocyte 73.8%, red blood cell 2.65 x 1012/L, hemoglobin 77 g/L, platelet 17 x 109/L, bone marrow was extracted after medication. Bone marrow images show poor myelodysplasia, with granulocytes dominated by protoearly cells. Subsequent flow cytometry, chromosomal karyotype, and fusion gene analysis were performed to exclude the possibility of leukemia. Flow cytometry showed that the proportion of myeloid primordial cells was not high, the granulocytes were mainly at the early and young stage, no abnormal phenotype was observed in erythrocytes, monocytes and NK cells, no obvious mature B lymphocytes were observed, and the ratio of CD4+/CD8+ was decreased. Karyotype results showed that there was no mitotic phase. The results of fusion gene analysis showed that the fusion gene was negative or lower than the detection sensitivity. Voliconazole was stopped first, and granulocyte colony stimulating factor was stopped 3 days later. Two weeks later, blood and bone marrow images basically recovered, white blood cell 7.88 x 109/L, neutrophil 46.3%, lymphocyte 48.2%, hemoglobin 126 g/L, platelet 142 x 109/L, bone marrow hyperplasia active. The proportion of three series is roughly normal. CONCLUSIONS: The reason for the occurrence of leukemia-like reaction in this patient was considered to be related to voriconazole and granulocyte colony stimulating factor, cessation of voriconazole and granulocyte colony stimulating factor, and recovery of blood and bone marrow images. In the clinical use of voriconazole and granulocyte colony stimulating factor, close attention should be paid to the drug interaction and individualized medication should be carried out to ensure the safety of medication.


Subject(s)
Antifungal Agents , Granulocyte Colony-Stimulating Factor , Voriconazole , Humans , Voriconazole/therapeutic use , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Male , Retrospective Studies , Middle Aged , Female , Leukemia/drug therapy
20.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747929

ABSTRACT

BACKGROUND: Female vulvovaginitis was one of the most common gynecological diseases. It had a great negative impact on their work and quality of life. This retrospective study evaluated the clinical and laboratory data of patients with vulvovaginitis in Hangzhou, China. To analyze the clinical situation, species distribution and antibiotic resistance of pathogenic fungi and bacteria in 626 cases of vulvovaginitis in Hangzhou. Microorganism culture, identification, and antibiotic susceptibility testing were conducted. The study aimed to provide a theoretical value for an effective treatment of vulvovaginitis. METHODS: In total, 626 outpatients and inpatients diagnosed with vulvovaginitis were selected from January 2018 to January 2023. Data of all the patients were collected from the hospital's electronic medical records. Vaginal secretion was collected for testing and SPSS 25.0 software was used to perform statistical analysis. RESULTS: A total of 626 strains of fungi, Gram-positive, and -negative bacteria were detected. Clinical situations of patients infected with the top five pathogenic fungi and bacteria were analyzed. Pathogenic fungi and bacteria were slightly different in each age group and in each onset time group. The results of antibiotic susceptibility testing showed that the resistance rates of itraconazole and fluconazole were high and Gram- negative and -positive bacteria were multidrug resistant. Gram-negative bacteria were more sensitive to carbenicillins and compound antibiotics, while Gram-positive bacteria were sensitive to rifampicin and daptomycin. MRSA and non vancomycin-resistant strains were detected. CONCLUSIONS: Fungi and bacteria were usually detected as pathogenes in patients with vulvovaginitis in Hangzhou. Some factors, such as age and onset time, often affected the incidence. Pathogenic fungi and bacteria were resistant to some common antibiotics, and clinical treatments should be carried out in a timely and reasonable manner according to the results of antibiotic susceptibility testing.


Subject(s)
Fungi , Microbial Sensitivity Tests , Vulvovaginitis , Humans , Female , China/epidemiology , Adult , Vulvovaginitis/microbiology , Vulvovaginitis/drug therapy , Vulvovaginitis/epidemiology , Vulvovaginitis/diagnosis , Retrospective Studies , Fungi/drug effects , Fungi/isolation & purification , Fungi/classification , Middle Aged , Young Adult , Adolescent , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Drug Resistance, Fungal , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Resistance, Bacterial , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...